SCIENCE OF INNOVATION: Synthetic Diamonds - A Science Perspective (Grades 6-12)

Objective:


Framework for K–12 Science Education - PS1.A: Structure and Properties of Matter, PS2.C: Stability and Instability in Physical Systems, PS3.C: Relationship Between Energy and Forces, PS3.D: Energy in Chemical Processes and Everyday Life, ESS2.A: Earth Materials and Systems, ETS1.A: Defining and Delimiting an Engineering Problem, ETS2.A: Interdependence of Science, Engineering, and Technology, ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World


Introduction Notes:


Science of innovation

Synthetic Diamonds

A Science Perspective (Grades 6–12)

 

Lesson plans produced by the National Science Teachers Association.

Video produced by NBC Learn in collaboration with the United States Patent and Trademark Office
and the National Science Foundation.

 

Background and Planning

 

About the Video

This video discusses some of the research and innovation related to the production of synthetic diamonds. Diamonds, both natural and synthetic, have valuable science and engineering applications that result from their hardness, durability, chemical inertness, and ability to withstand change when exposed to very high temperatures and pressures. In his research at the Geophysical Laboratory at the Carnegie Institution for Science in Washington DC, Dr. Russell Hemley studies the response of certain materials to extreme temperatures and pressures, similar to those found in Earth’s core. Because his research requires the use of large diamonds, Hemley has developed a new method for producing synthetic diamonds that are much larger than those that have been produced using other methods. Hemley’s initial diamond synthesis technique led to further innovations related to the production and testing of synthetic diamonds, and has resulted in 14 patents issued to him and his colleagues.

 

0:00        0:14        Series opening

0:15        0:41        Some properties of diamonds

0:42        1:03        Description of a diamond’s structure

1:04        1:34        Introduction of Dr. Hemley and his research

1:35        2:10        How diamonds form in nature

2:11        2:30        Creation of the first synthetic diamonds

2:31        3:24        Description of two diamond-synthesis methods—CVD and MCVD

3:25        3:54        Discussion of the need for larger diamonds

3:55        4:43        How innovation inspires further innovation

4:44        5:06        Hemley’s patents for synthetic diamond production

5:07        5:31        Summary

5:32        5:50        Closing credits

 

Language Support

To aid those with limited English proficiency or others who need help focusing on the video, make the transcript of the video available. Click the Transcript tab on the side of the video window, then copy and paste into a document for student reference.

 

Framework for K–12 Science Education

        PS1.A: Structure and Properties of Matter

        PS2.C: Stability and Instability in Physical Systems

        PS3.C: Relationship Between Energy and Forces

        PS3.D: Energy in Chemical Processes and Everyday Life

(1)

        ESS2.A: Earth Materials and Systems

        ETS1.A: Defining and Delimiting an Engineering Problem

        ETS2.A: Interdependence of Science, Engineering, and Technology

        ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World

 

Emphasize Innovation

 

Innovation Process

Patents

One aspect of securing patents is that in exchange for exclusive rights to a process, the inventor must share information about the process. This disclosure of information enables others to build on previous work and, in turn, leads to further innovation. On February 15, 1955, General Electric’s press release read: “Man-made diamonds, the climax to a 125-year effort to duplicate nature’s hardest and most glamorous substance, were displayed here today.” In 1960, three GE scientists were awarded Patent No. 2,947,610 for their work. Since then, other scientists have built on the GE knowledge base, resulting in more than 3,000 patents being issued for all research related to synthetic diamond production.

 

Take Action with Students

Point out to students that the United States Patent and Trademark Office (USPTO) has issued 14 patents related to Hemley’s method of diamond synthesis, many having to do with the method of diamond production itself, but some relating to manipulating the process to change a diamond’s properties. Have students research some of the patents highlighted in the video (4:44–5:06) and use this information to brainstorm a list of possible future innovations related to synthetic diamonds and their production.

 

Innovation and STEM

The innovation highlighted in Science of Innovation (SOI): Synthetic Diamonds incorporates many aspects of STEM (Science, Technology, Engineering, and Mathematics) education. For example, required science knowledge includes an understanding of how a diamond’s structure gives it properties that make it useful for certain applications, and how to create, in a lab, the conditions under which those properties emerge. Math concepts revolve around the algorithms unpinning the changes in matter that result from changes in pressure and temperature. Starting with a vision that relies on this science and math knowledge, Hemley uses microwave technology to produce the synthetic diamonds he uses in his research. The engineering process involves designing the materials and equipment required to conduct research – in this case, figuring out how to modify existing equipment and procedures in order to create large synthetic diamonds for use in Hemley’s research, based on the response of certain materials to extreme changes in temperature and pressure.

 

Take Action with Students

Because cost and equipment limits any hands-on inquiry involving diamonds in a typical classroom setting, use the Design Investigations section of Facilitate Inquiry as a guide to encourage students to conduct research on how the physical properties of diamonds, both

 

(2)

synthetic and natural, make them useful not only as jewelry, but also as industrial abrasives and

engraving tools; in medicine to deliver cancer-fighting drugs to affected parts of the body; to cover openings in X-ray chambers and other types of imagining devices; in high-end audio equipment; and as semiconductor coatings for computer chips, among many other uses.

 

Facilitate Inquiry

Encourage inquiry using a strategy modeled on the research-based science writing heuristic. Student work will vary in complexity and depth depending on grade level, prior knowledge, and creativity. Use the prompts liberally to encourage thought and discussion. Student Copy Masters begin on page 8.

 

Explore Understanding

Most students are familiar with the term mineral as it is used in earth science—a naturally occurring, inorganic solid with a definite crystalline structure and chemical composition. Many students are also familiar with common mineral properties such as color, hardness, luster, fracture, cleavage, streak, and density. Help students differentiate between rocks and minerals, and recall properties of diamonds in particular, using prompts such as the following.

         Rocks contrast with minerals in that….

         Some properties of minerals include….

         The mineral properties of luster, color, and streak are related in that….

         Mineral hardness describes the resistance of a mineral to being _____, and diamond is rated very hard because….

         Fracture and cleavage describe the way in which a mineral….

         Density is the relationship between….

 

Inform students that in addition to the properties describe above, diamonds also possess other properties including rarity, chemical inertness, resistance to radiation, the ability to easily conduct heat, and the ability to withstand extremely high temperatures and pressures.

 

Show the video SOI: Synthetic Diamonds and encourage students to jot down notes while they watch. As they watch the video, ask students to consider all of these properties of diamonds, and how each might dictate how the mineral is or could be used in research and in everyday life. Continue the discussion of mineral properties, and introduce Dr. Hemley’s research and the synthetic diamond production process using prompts such as the following:

         When I watched the video, I thought about….

         Some properties of diamonds are….

         Natural diamonds form….

         Synthetic diamonds can be made by….

         Hemley’s method of diamond production is different from other methods in that….

         In order to synthesize diamonds, Hemley….

         The properties of synthetic diamonds can be changed by….

 

(3)


Ask Beginning Questions

Stimulate small-group discussion with the prompt: This video makes me think about these questions…. Then have groups list questions they have about how the different properties of diamonds might make them useful or desirable. Ask groups to choose two or more related questions and phrase them in such a way as to be researchable and/or testable. The following are some examples:

         Which properties of diamonds make them desirable as gemstones?

         Why are some diamonds not used as gemstones?

         Which properties of diamonds make them useful or potentially useful in medicine?

         What are some ways in which the property of hardness makes diamonds useful?

         How does their ability to conduct heat and their chemical inertness make diamonds useful?

         How do the properties of synthetic diamonds compare with those of natural diamonds?

         What are some ways in which synthetic diamonds are used or might be used?

 

Design Investigations

Choose one of these two options based on your students’ knowledge, creativity, and ability level.

 

Open Choice Approach(Copy Master page 8)

Groups might come together to agree on the questions for which they will explore the answers, or each group might explore different questions. Students should brainstorm to form a list of key words and phrases they could use in Internet search engines that might result in resources that will help them answer their questions. Review how to safely browse the Web, how to evaluate information on the Internet for accuracy, and how to correctly cite the information found. Suggest students make note of any interesting tangents they find in their research effort for future inquiry. Encourage students with prompts such as the following:

         Words and phrases associated with our questions are….

         The reliability of our sources was established by….

         The science and math concepts related to the topics include….

         Our research might feed into related topics such as….

         To conduct the investigation safely, we will….

 

Focused Media Research Approach(Copy Master page 9)

The following exemplifies how students might investigate some of the properties that make diamonds useful in the field of medicine.

1.      Ask the following questions to spark students’ thinking about the relationship between a diamond’s properties and its usefulness or potential usefulness in medicine:

         How does diamond compare to other materials in terms of strength, or hardness?

         How might diamond’s chemical inertness be beneficial?

         What are some of the optical properties of diamond?

         How might diamond’s luster, or the way it reflects light, be useful?

2.      If students need help getting started, you might provide the following references.  Note: If links do not automatically load, copy and paste the URLs into your Internet browser bar.

 

(4)

         From medical uses to cosmetic additive: how nano-diamonds may improve the quality of life
http://www.examiner.com/article/from-medical-uses-to-cosmetic-additive-how-nano-diamonds-may-improve-the-quality-of-life

         Diamonds are for everything
http://www.rsc.org/chemistryworld/Issues/2011/September/DiamondsAreForEverything.asp

         How Could Flawless Diamonds Change the Future of Medicine?
http://news.discovery.com/tech/flawless-diamonds-lasers.htm

         Diamonds Are a Laser’s Best Friend
http://www.sciencedaily.com/releases/2009/09/090918153113.htm

         Nanodiamonds Useful for Everything from Engine Oil to Cancer
http://blog.targethealth.com/?p=7471

         Nanocrystalline diamond, its synthesis, properties and applications
www.researchgate.net/...Nanodiamonds/file/9fcfd5034bb383650b.pdf

3.      Remind students to take detailed notes as they conduct their research. Also review, if necessary, how to safely browse the web, how to evaluate Internet sources for accuracy, and how to properly cite the information found. You might also want to provide students with the rubric on page 10 so that they can use it as a guide to conduct their research.

4.      Students might continue their investigation by finding out how the properties of diamonds make them useful in industry and as jewelry. Some students might also be interested in finding out more about the processes used to create diamonds in the lab.

 

Make a Claim Backed by Evidence

Have students analyze their findings and then make one or more claims backed by evidence. Encourage students with this prompt: As evidenced by… I/we claim… because….

An example claim might be:

As evidenced byour findings, we claim that diamonds can be very useful in the field of medicine because they are chemically inert, can be easily made in a lab, are hard and don’t break easily, and reflect light well.

 

Compare Findings

Encourage students to compare their ideas with others—such as classmates who investigated the same or similar questions, material they found on the Internet, or an expert they chose to interview. Remind students to credit their original sources in their comparisons. Elicit comparisons from students with prompts such as:

         My ideas are similar to (or different from) those of the expert in the video in that….

         My ideas are similar to (or different from) those of my classmates in that….

         My ideas are similar to (or different from) those that I found on the Internet in that….

 

Students might make comparisons like the following:

My ideas are similar to those of my classmates. All of us found that the properties of diamonds make them very useful. My group found out that diamonds can be used to study and treat certain illnesses and conditions, they can be used to perform delicate surgeries, and that they can be used to help prevent rejection of an implant. Another group in our class found that the

(5)

hardness of diamonds makes them very useful in grinding and polishing, engraving, and even in cutting other diamonds! Jillian’s group discovered that diamonds are often used to coat semiconductors, microchips, and other small parts used in computers.

 

Reflect on Learning

Students should reflect on their understanding, thinking about how their ideas have changed or what they know now that they didn’t before. Encourage reflection, using prompts such as the following:

         My ideas about this topic have changed because of this evidence….

         My ideas changed in the following ways….

         One concept I still do not understand involves….

         One aspect of this topic I would like to learn more about is….

 

Inquiry Assessment

See the rubric included in the student Copy Masters on page 10.

 

 

Incorporate Video into Your Lesson Plan

 

Integrate Video in Instruction

Compare/Contrast:  Write the following statement from the video on the board: “The best synthetic diamond that we produce is no different than the very best diamond that comes from planet Earth.” Have students use this quote as a starting point to compare and contrast natural and synthetic diamonds. Students might work in small groups and use graphic organizers such as Venn diagrams. Encourage them to include words such as atoms, carbon, temperature, pressure, structure, and time to form in their organizers.

 

Sequence:  Replay the video from 1:35 to 2:10, with the sound muted, several times. Ask students to use the segment to explain how diamonds form and are brought to Earth’s surface.

 

Using the 5E Approach?

If you use a 5E approach to lesson plans, consider incorporating video in these Es:

Explore:  Use the Design Investigations section of Facilitate Inquiry to support your lessons on matter, atomic structure, minerals, and mineral properties.

Explain:  Point out to students that in the video, Hemley states, “Innovation is about serendipity.” Have students look up definitions of the term serendipity, and use them to discuss what they think Hemley means by this statement.

 

Connect to … Math

Polymorphs:  Graphite and diamond are polymorphs, or minerals with the same chemical composition but very different atomic structures. The carbon atoms in graphite are combined in thin sheets that are slightly offset from one another. Within each sheet, every atom of carbon is weakly bound to adjacent atoms at the apexes of equilateral triangles. The carbon atoms in diamond, on the other hand, are strongly bound to adjacent atoms at the apexes of a

tetrahedron. Provide students with this information, and magnetic ball and rod building kits or

(6)

marshmallows and toothpicks; have them make three-dimensional models of the atomic structures of graphite and diamond, and relate the differences in their atomic structures to their different hardnesses, as well as to how the two minerals are commonly used in different real-world applications. You might want to provide students with one or more of the following URLs to get them started. Note: If links do not automatically load, copy and paste the URLs into your Internet browser bar.

         How can graphite and diamond be so different if they are both composed of pure carbon?

      http://www.scientificamerican.com/article.cfm?id=how-can-graphite-and-diam

         Diamond and Graphite

      http://www.enmu.edu/services/museums/miles-mineral/diamond.shtml

         Covalent Network

      http://www.avogadro.co.uk/structure/chemstruc/network/g-molecular.htm

 

Prompt Innovation with Video

After students watch the video, have them research patents associated with synthetic diamonds and their production. They can do so with an Internet search on Google.com/patents using search terms such as the following.

 

Primary Search Terms

Gemstone

Ultratough

Ultrahard

Carbon crystallization

Single-crystal diamond

Monocrystalline diamond

Octahderal shape

Isometric

Hardness

Fracture toughness

HTPT: high pressure, high temperature

Additional Search Terms

Diamond production

Energy beam

Plasma generator

CVD: chemical vapor deposition

MCVD: microwave chemical deposition

PCVD: plasma chemical vapor deposition

 

 

Patent Examples

5,099,788                 Method and apparatus for forming a diamond film

5,704,976                 High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma

5,955,155                 CVD method of depositing a plurality of polycrystalline diamond film layers

6,129,900                 Process for the synthesis of diamond

6,582,513                 System and method for producing synthetic diamond

2003/0230232        Method of making enhanced CVD diamond

2004/0169178        Diamond semiconductor and diamond semiconductor light-emitting device that uses the semiconductor

 

Suggest students read abstracts of patents that attract their attention. Then hold a discussion about how various innovators are improving on the process. Use prompts such as the following:

         This patent is for _____, which is related to the invention shown in the video by….

         This patent describes _____, which differs from the invention shown in the video in that….

         I think doing/making _____ would be an innovation because….

 

(7)


            

Copy Master: Open Choice Inquiry Guide for Students

 

Science of Innovation: Synthetic Diamonds

Use this guide to research one or more questions about the how the physical properties of natural or synthetic diamonds make them useful. Write your report in your science notebook.

 

Ask Beginning Questions

The video makes me think about these questions….

 

Plan Research

Choose one or more related questions. How can you answer them? Brainstorm a research strategy with your team. Use the prompts below to help focus your thinking.

         Words and phrases associated with our questions are….

         The reliability of our sources was established by….

         The science and math concepts related to the topics include….

         Our research might feed into related topics such as….

         To conduct the investigation safely, we will….

 

Record Findings

Record your findings. Include tables, graphs, and other images, as needed.

 

Make a Claim Backed by Evidence

Analyze your information, then make one or more claims based on the evidence. You might want to use one of the prompts below to write your claim(s).

•    As evidence by… I claim. because….

•    I claim that… because my findings show that….

 

My Evidence

My Claim

My Reason

 

 

 

 

 

Compare Findings

Review the video and then discuss your results with classmates who investigated the same or similar questions. Or do more research on the topic, or talk to an expert. How do your findings compare? Be sure to give credit to others when you use their findings in your comparisons.

         My ideas are similar to (or different from) those of the experts in the video in that….

         My ideas are similar to (or different from) those of my classmates in that….

         My ideas are similar to (or different from) those that I found on the Internet in that….

 

Reflect on Learning

Think about your results. How do they fit with what you already knew? How do they change what you thought you knew about the topic?

         My ideas about this topic have changed because of this evidence….

         My ideas changed in the following ways….

         One concept I still do not understand involves….

         One aspect of this topic I would like to learn more about is….

(8)

COPY MASTER: Focused Inquiry Guide for Students

 

Science of Innovation: Synthetic Diamonds

Use this guide to investigate one or more questions how the properties of diamonds make them useful. Write your report in your science notebook.

 

Ask a Beginning Question

How do the properties of diamonds make them useful in medicine?

 

Plan Research

Brainstorm with your team how you think you can answer your question(s). Use these prompts to help you.

         Words and phrases associated with our questions are….

         The reliability of our sources was established by….

         The science and math concepts related to the topics include….

         Our research might feed into related topics such as….

         To conduct the investigation safely, we will….

 

Record Findings

Record your findings. Include tables, graphs, and other images, as needed.

 

Make a Claim Backed by Evidence

Analyze your information, then make one or more claims based on the evidence. You might want to use one of the prompts below to write your claim(s).

•    As evidence by… I claim… because….              

•     I claim that… because my findings show that….

 

My Evidence

My Claim

My Reason

 

 

 

 

 

Compare Findings

Review the video and then discuss your results with classmates who investigated the same or similar questions. Or do more research on the topic, or talk to an expert. How do your findings compare? Be sure to give credit to others when you use their findings in your comparisons.

         My ideas are similar to (or different from) those of the experts in the video in that….

         My ideas are similar to (or different from) those of my classmates in that….

         My ideas are similar to (or different from) those that I found on the Internet in that….

 

Reflect on Learning

Think about your results. How do they fit with what you already knew? How do they change what you thought you knew about the topic?

         My ideas about this topic have changed because of this evidence….

         My ideas changed in the following ways….

         One concept I still do not understand involves….

         One aspect of this topic I would like to learn more about is….

(9)


 

 

Copy Master: Assessment Rubric for Inquiry Investigations

 

 

Criteria

1 point

2 points

3 points

Initial question

Question had a yes/no answer, was off topic, or otherwise was not researchable or testable.

Question was researchable or testable but too broad or not answerable by the chosen investigation.

Question clearly stated, researchable or testable, and showed direct relationship to investigation.

References cited

All of the references used in the study were incorrectly cited.

Only some of the references used in the study were correctly cited.

All of the references used in the study were correctly cited.

Claim

No claim was made or the claim had no evidence to support it.

Claim was marginally supported by evidence from the research.

Claim was well supported by strong evidence from the research.

Findings comparison

Comparison of findings was limited to a description of the initial questions.

Comparison of findings was marginally supported by the information collected.

Comparison of findings was well supported by the information collected.

Reflection

None of the reflections were related to the initial questions.

Some of the reflections were related to the initial questions.

All of the reflections were related to the initial questions.

 

(10)

 

Close NBC Learn

Choose your product

For NBC Learn in Learning Management Systems please log in to your institution's Learning Management System web site and click "Browse NBC Learn".
For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.